Facultade de Fisioterapia

Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

Authors: S. Gil, M.T.C. de Loos-Vollebregt, Carlos Bendicho

Journal: Spectrochimica Acta Part B, 64: 208-214, 03/2009

DOI: https://doi.org/10.1016/j.sab.2008.12.002


Abstract

A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 µL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 µg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations (N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.